Al al-Bayt University Faculty of Science Mathematics Department	Calculus 1 (401101) First Semester - 2017/2018 Lecturer: Dr.			
図 <u>ての文化 Boolk</u> Howard Anton, IrI C. Bivens and Stephen Davis, <u>Calculus, Late Transcendentals</u> , 9 th Edition, Wiley. 図 <u>Recommended References</u>				
1) Salas, Hille & Etgen , <u>Calculus</u> . 2) Thomas and Finney, <u>Calculus.</u> .				
 Course Objectives Learn the concept of functions and inverse functions. Understand the concept of limits and its related topics such as continuity and the continuity of Trigonometric functions. Learn the techniques of differentiation of functions such as polynomials, trigonometric functions. Then learn to apply the chain rule and the implicit differentiation. Study the behavior of the function through exploring its first and second derivatives. Study Rolle's and the Mean value theorems. Understanding the concept of integration, compute the definite and indefinite integrals by substitution. Study the Fundamental theorem of calculus. Study the derivatives and integrals of the exponential, logarithmic, inverse trigonometric and hyperbolic functions. 				
Course content listing Course content listing Pages and Course content Pages and assigments assigments				
 Chapter 0: Before Calculus 0.1 Functions 0.2 New functions from old 		1 - 38 all odd questions		
 Chapter 1: Limits and Continuity 1.1 Limits (An intuitive approach) 2 Computing limits 1.3 Limits at infinity; End behavior of a function 		49 - 101 all odd questions		
 Chapter 2: The Derivation 2.1 Tangent lines and restriction 2.2 The derivative function 2.3 Introduction to test 2.4 The product and quest 2.5 Derivatives of Trig 	ates of change ction chniques of differentiation notient rules	110 - 161 all odd questions		

	2.6 The chain rule2.7 Implicit differentiation			
 Chapter 3: The Derivative in graphing and applications 3.1 Analysis of functions I: Decrease and concavity 3.2 Analysis of functions II: Relative extrema, Graphing polynomial 3.3 Analysis of functions III: Rational functions, Cusps and vertical tangents 3.4 Absolute maxima and minima 3.8 Rolle's theorem, Mean value theorem 			187 - 216 & 252 all odd questions	
 Chapter 4: Integration 4.2 The Indefinite integral 4.3 Integration by substitution 4.5 The definite integral 4.6 The fundamental theorem of Calculus 4.9 Evaluating definite integrals by substitution 			265 - 309 & 337 all odd questions	
*		he definite integral in geometry, neering	347 & 371 all odd questions	
*	 Chapter 6: Exponential, Logarithmic and inverse trigonometric functions Exponential and Logarithmic functions Exponential and Logarithmic functions Derivatives and integrals involving Logarithmic functions Derivatives of inverse functions, Derivatives and integrals involving exponential functions Geraphs and applications involving Logarithmic and exponential functions L'Hopital's rule, indeterminate forms Logarithmic and other functions defined by integrals Torivatives and integrals involving inverse Trigonometric functions Hyperbolic functions 			
R Evaluation Strategies				
	Assessment First Exem	Expected Due Date	Percentage 25 %	

First Exam	To be announced later	25 %
Second Exam	To be announced later	25 %
Final exam	Please refer the bulletin	50 %

🗷 <u>Office Hours</u>

Sunday	
Monday	
Tuesday	
Wednesday	