Faculty of Science Physics Department

Course Outline of Mathematical Physics

1. Instructor's Information

Instructor's / Coordinator's Name:	Prof. Hatem Widyan
Office Hours:	10-11, 12-1: Sunday, Tuesday, Thursday
Office and Phone:	Bukhari 2 nd Floor (2172)
Email:	widyan@aabu.edu.jo
Research and Teaching Assistant /	NA
Supervisor / Technical (if any):	

2. Course Information

Course No.: 402781	Course Title: Mathematical Physics	Level: Master
Course Type: Theoretical	Prerequisite: Calculus II	Class Time: 2:00-5:00
Academic Year:2020-2021	Semester: Fall	Study hours:

3. Course Description

This is an advanced course in mathematical physics for graduate students. We begin by reviewing the complex numbers. After that we introduce complex variables and functions, Cauchy-Riemann conditions, Cauchy integral theorem. We discuss singularities and Laurent expansion. Residues theorem and evaluating definite integrals are also discussed. We introduce Sturm-Liouville theory and the meaning of Hermitian operators is discussed. The concept of Green functions is discussed and we learn how to obtain them for one-dimensional problems. After that integral transforms are discussed: Fourier as well as Lapalce transforms. Application of them to physical problems are introduced. Finally we discuss the integral equations and why they are useful in physics.

4. Course Objectives:

a-	Solving complicated integrals using residue theorem.
b-	Solving Sturm-Liouville problems
c-	Solving complicated problems in physics using Green's functions.
d-	
	Laplace transformation.
e-	Transform differential equations to integral equations and solving them.
f-	Use Fourier series to expand and periodic function in terms of sine and
	cosine.

5. Course Learning Outcomes (CLO)

(Knowledge, Skills, and Competencies) (K,S,C)

Upon successful completion of the course, the students will be able to:

CLO 1: Define various quantities related to the course. (K)

CLO 2: Evaluate integrals problems using residue theorem. (S,C)

CLO 3: Define Hermitian operators and solve Sturm-Liouville problems. (S,C)

CLO 4: Obtain Green's functions. (S,C)

CLO 5: Solve physical problems using Fourier and Laplace Transforms. (S)

CLO 6: Define integral equations. (S,C)

6. Course Content

Week	Торіс	Comments	Course Outcome
1	CHAPTER : OVERTURE	We review the concept of complex numbers	CLO1+CLO2
2-6	 Complex Variable Theory Complex variables and functions Cauchy-Riemann conditions Cauchy integral formula Laurent expansion and singularities Residue theorem Evaluation of definite integrals 	To define the complex variables and functions. We define Cauchy-Riemann conditions. We learn Cauchy integral formula. We learn how to evaluate Laurent expansion. We define residue theorem and use it to evaluate definite integrals.	CLO1+CLO2
7	 Sturm-Liouville Theory Hermitian operators ODE eigenvalue problems 	To define Hermitian operators. We learn how to solve ODE eigenvalue problems using variation method. We learn Gram-	CLO1+CLO3

	 Variation methods Gram-Schmidt orhogoanlization 	Schmidt orthogonaliztion technique.	
	~Mid EXAM on Er	nd of November (30%)	
8-9	 Green's Functions One dimensional problems Problems in two and three dimensions. 	In this chapter, we discuss Green functions. We learn how to obtain them for different operators. We discuss various problems in all dimensions.	CLO1+CLO4
10-12	Integral Transforms> Introduction> Fourier transforms> Properties of Fourier transforms> Fourier convolution theorem> Laplace transforms> Properties of Laplace transforms> Laplace convolution transforms> Laplace transforms> Inverse Laplace transforms	We define Fourier transforms and their properties. We learn Fourier convolution theorem. We discuss inverse Fourier transforms. We do the same thing for Laplace transforms.	CLO1+CLO5
13-15	Integral Equations > Introduction > Some special methods > Neumann series > Hilbert Schmidt theory	Integral equations have a wide applications in physics. So, we learn how to solve them using special methods.	CLO1+CLO6
16	Review	Review	Final Exam

7. Teaching and Learning Strategies and Evaluation Methods

No.	Learning	Teaching	Learning Activities	Evaluation /Measurement
	Outcomes	Strategies		Method
				(Exam/ presentations/ discussion/
				assignments)
1	(CLO1)	trad. lect.	Discussion & Problem Solving	HW & First Exam & Final Exam
2	(CLO2)	trad. lect.	Discussion & Problem Solving	HW & First Exam & Final Exam
3	(CLO3)	trad. lect.	Discussion & Problem Solving	HW & Second Exam & Final Exam
4	(CLO4)	trad. lect.	Discussion & Problem Solving	HW & Final Exam
5	(CLO5)	trad. lect.	Discussion & Problem Solving	HW & Final Exam
6	(CLO6)	trad. lect.	Discussion & Problem Solving	HW & Final Exam

8. Assessment

Methods Used	Assessment Time	Distribution of grades
1- Semester work (report,	During semester	20%
assignments, attendance)		
3- Mid Exam	8th week	30%
4- Final Exam	Week of the final exams	50%

9. Textbook

Main Reference	Mathematical Methods for Physicists
Author	George Arfken, Hans J. Weber and Frank E. Harris
Publisher	Academic Press
Year	2013
Edition	$7^{\rm nd}$
Textbook Website	-

10. Extra References (books and research published in periodicals or websites)

1-	Mathematical Methods in the Physical Sciences, Mary L. Boas, Third
	Edition, John Wiley & Sons, 2006.
2-	Mathematical physics, Eugene Butkov, First Edition, Addison-Wesley, 1968